Swimming propulsion forces are enhanced by a small finger spread.
نویسندگان
چکیده
The main aim of this study was to investigate the effect of finger spread on the propulsive force production in swimming using computational fluid dynamics. Computer tomography scans of an Olympic swimmer hand were conducted. This procedure involved three models of the hand with differing finger spreads: fingers closed together (no spread), fingers with a small (0.32 cm) spread, and fingers with large (0.64 cm) spread. Steady-state computational fluid dynamics analyses were performed using the Fluent code. The measured forces on the hand models were decomposed into drag and lift coefficients. For hand models, angles of attack of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, and 90 degrees, with a sweep back angle of 0 degrees, were used for the calculations. The results showed that the model with a small spread between fingers presented higher values of drag coefficient than did the models with fingers closed and fingers with a large spread. One can note that the drag coefficient presented the highest values for an attack angle of 90 degrees in the three hand models. The lift coefficient resembled a sinusoidal curve across the attack angle. The values for the lift coefficient presented few differences among the three models, for a given attack angle. These results suggested that fingers slightly spread could allow the hand to create more propulsive force during swimming.
منابع مشابه
Effective Propulsion in Swimming: Grasping the Hydrodynamics of Hand and Arm Movements.
In this paper, a literature review is presented regarding the hydrodynamic effects of different hand and arm movements during swimming with the aim to identify lacunae in current methods and knowledge, and to distil practical guidelines for coaches and swimmers seeking to increase swimming speed. Experimental and numerical studies are discussed, examining the effects of hand orientation, thumb ...
متن کاملThe hydrodynamics of swimming at intermediate Reynolds numbers in the water boatman (Corixidae).
The fluid forces that govern propulsion determine the speed and energetic cost of swimming. These hydrodynamics are scale dependent and it is unclear what forces matter to the tremendous diversity of aquatic animals that are between a millimeter and a centimeter in length. Animals at this scale generally operate within the regime of intermediate Reynolds numbers, where both viscous and inertial...
متن کاملPropulsion in Cubomedusae: Mechanisms and Utility
Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion ...
متن کاملPressure differential on a swimmer’s hands and swimming direction
It is vital to maintaining a constant direction during locomotion. Turning in walking is triggered by the impulse from the leg located outside its rotation axis. Then, the centre of gravity is relocated in the direction of an inside limb [1]. It is commonly believed that similar correlation can be observed in swimming. Greater propulsion forces produced by the right limbs cause turning left. Th...
متن کاملOntogenetic changes in the bell morphology and kinematics and swimming behavior of rowing medusae: the special case of the limnomedusa Liriope tetraphylla.
Swimming animals may experience significant changes in the Reynolds number (Re) of their surrounding fluid flows throughout ontogeny. Many medusae experience Re environments with significant viscous forces as small juveniles but inertially dominated Re environments as adults. These different environments may affect their propulsive strategies. In particular, rowing, a propulsive strategy with e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied biomechanics
دوره 26 1 شماره
صفحات -
تاریخ انتشار 2010